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Abstract

The control function approach remains the dominant method for estimating production func-

tions. In this framework, unobserved productivity is recovered by inverting a proxy function

that relates it to observed state variables and flexible inputs. A key specification test proposed

by Levinsohn and Petrin (2003) relies on the invariance of parameter estimates across different

nonparametric proxies for flexible inputs. Given the widespread use of Cobb-Douglas production

functions in empirical industrial organization, we propose a related test within the parametric in-

version framework of Doraszelski and Jaumandreu (2013) (hereafter DJ). Specifically, we demon-

strate that under the identification assumptions of DJ, the recovered productivity process—and

hence the structural parameter estimates—should be invariant to the choice of flexible input used

for inversion. Consequently, systematic discrepancies across inversion strategies can serve as a

diagnostic tool for detecting violations of the model’s underlying assumptions.
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1.- Introduction

The dominant approach to estimating production functions in the presence of unobserved produc-

tivity in empirical industrial organization is the control function framework introduced by Olley and

Pakes (1996) (hereafter OP). This class of methods relies on four key assumptions (see Ackerberg

et al., 2015; Ackerberg, 2023; De Loecker and Syverson, 2021 ). First, productivity is the only unob-

served state variable (the scalar unobservable assumption). Second, a proxy variable—investment

in original OP—exists that responds to productivity shocks and observed state variables, thereby al-

lowing productivity to be expressed as a function of observables through the inversion of the firm’s

input decision rule. Third, a timing assumption ensures that capital is predetermined with respect

to current productivity shocks but may correlate with persistent productivity. Fourth, productivity

evolves according to a first-order Markov process.

Building on the framework of Olley and Pakes (1996), Levinsohn and Petrin (2003) (hereafter

LP) propose using intermediate input demand—rather than investment—as the proxy variable in

the control function for unobserved productivity. By relying on intermediate inputs, which are typi-

cally non-zero and more smoothly varying, the LP method enhances the feasibility and robustness of

the estimation procedure, while still maintaining the scalar unobservable and monotonicity assump-

tions.

The existence of multiple intermediate inputs also enables specification testing based on the in-

ternal consistency of the model. In this spirit, Levinsohn and Petrin (2003) propose a simple test

grounded in the invariance of parameter estimates across proxy functions constructed from different

intermediate inputs. Substantial variation in estimates obtained using distinct proxies may signal

model misspecification. However, because LP’s estimation relies on nonparametric approximations

to the proxy functions, observed discrepancies may also stem from systematic differences in approx-

imation error rather than genuine violations of the identification assumptions.

In this note, following the logic of Levinsohn and Petrin (2003), we propose building the stabil-

ity test on the parametric inversion framework developed by Doraszelski and Jaumandreu (2013)
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(hereafter DJ).1 While DJ framework retains the scalar unobservable assumption it exploits the para-

metric structure of the Cobb-Douglas production function to recover productivity directly from the

first-order conditions implied by the firm’s optimal flexible input decisions. Specifically, DJ assume

a Cobb-Douglas production function, one of the most widely used functional forms in empirical in-

dustrial organization (see De Loecker and Syverson, 2021). Under this specification, the static profit

maximization problem yields closed-form expressions for the flexible input FOCs, allowing produc-

tivity to be expressed as a parametric function of observables and structural parameters.

A direct implication of the DJ approach is that the number of candidate productivity inversion

equations corresponds to the number of flexible inputs in the production function. However, the esti-

mates of the structural parameters should remain invariant to the specific inversion equation used to

recover productivity. In other words, assuming the model is correctly specified, parameter estimates

should be consistent across different inversion strategies. Consequently, any divergence in estimates

obtained from alternative inversion approaches can serve as a diagnostic tool for evaluating the va-

lidity of the underlying assumptions—an idea closely aligned with the specification test proposed by

Levinsohn and Petrin (2003).

To illustrate the proposed test, we draw on the empirical application presented in DJ. Our findings

show that DJ’s estimated production function coefficients vary significantly depending on the input

demand equation used to recover productivity. For example, in the metals and metal products sector,

the estimated labor coefficient increases from 0.111 to 0.247 when intermediate inputs, rather than

labor, are used to invert productivity. A similar pattern emerges in the food, drink, and tobacco

sector, where the labor coefficient rises from 0.129 to 0.211. These shifts are not limited to labor

inputs: the materials coefficient declines from 0.684 to 0.543 in the metals sector and from 0.766 to

0.608 in the food sector. Meanwhile, the capital coefficient in the latter sector increases from 0.068 to

0.147. These discrepancies are not isolated cases; rather, comparable divergences are observed across

other Spanish manufacturing sectors analyzed in DJ’s study.

Taken together, the dependence of parameter estimates on the choice of inversion procedure
1DJ is a widely cited contribution in empirical industrial organization, offering a transparent and tractable alternative

to nonparametric control function methods by leveraging first-order conditions associated with flexible input choices.

2



raises concerns about potential violations of the underlying specification assumptions. In what fol-

lows, we identify two plausible sources of misspecification that may account for the observed vari-

ation in DJ’s estimates: optimization errors and measurement error—beyond the more straightfor-

ward possibility that the production function itself is misspecified. As we demonstrate, these issues

introduce additional unobservables into the estimation process, thereby violating the scalar unob-

servable assumption that underpins the DJ framework.

Beyond statistical concerns, these discrepancies may also carry important economic implications.

For instance, in the context of markup estimation via the production approach (e.g., De Loecker and

Warzynski, 2012), the implied markup based on the DJ-estimated labor coefficient more than doubles

when switching from a labor-based to a materials-based inversion. Conversely, markups constructed

using materials fall by nearly 20% relative to those based on labor. In short, the choice of inversion

strategy can dramatically alter empirical conclusions, including those central to questions of market

power (see also Raval, 2023).

The note is organized as follows. Section 2 presents the parametric inversion approach to show

that the estimates should be invariant to the inversion approach. In section 3 we give two possible

reasons for the variability of the estimates. In section 4 we conclude.

2.- Parameter Estimates Independent of Inversion Approach

In this section, we show that, under the identifying assumptions of the DJ framework, the recovered

productivity process is invariant to the choice of flexible input used in the inversion. Consequently,

parameter estimates should not depend on the specific inversion strategy employed.

Let the production function for firm j be given by

Q∗
jt = eωjt F(Mjt, Ljt, Kjt; θ),

where F(·) is a known functional form, Mjt and Ljt are flexible inputs (materials and labor), Kjt

is the dynamic input (capital), and θ denotes the vector of parameters. The scalar unobservable
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assumption implies that ωjt, the firm-specific productivity shock, is the sole unobserved variable to

the econometrician. Productivity is assumed to follow a first-order Markov process:

ωjt = g(ωjt−1, rdjt−1) + ξ jt,

where g(·) is an unknown function, rdjt−1 denotes lagged R&D expenditure, and ξ jt is an exogenous

productivity shock. The firm faces an inverse demand curve given by

Pjt = Q∗
jt
−1/η ,

where η > 1 is the elasticity of demand.

The empirical production function is derived from Qjt = Q∗
jte

ujt , where ujt captures measurement

error. Taking logarithms yields:

ln Qjt = ln F(Mjt, Ljt, Kjt; θ) + g(ωjt−1, rdjt−1) + ξ jt + ujt. (1)

Here, ωjt has been substituted using its law of motion. 2

To control for unobserved productivity in (1), DJ propose using the firm’s optimal input choices

derived from first-order conditions. At each t, the firm chooses Mjt and Ljt to maximize profits:

max
Mjt,Ljt

(
eωjt F(Mjt, Ljt, Kjt; θ)

)1−1/η − PMjt Mjt − PLjt Ljt.

Inverting the first-order conditions and taking logarithms yields the following expressions for

productivity:

hLjt := ωjt =
1

1 − 1
η

[
pLjt − ln

(
1 − 1

η

)
+

1
η

ln F(Kjt, Ljt, Mjt; θ)− ln
∂F
∂L

(Kjt, Ljt, Mjt; θ)

]
, (2)

2DJ assume a Cobb-Douglas production function, so their empirical specification becomes:

qjt = α0 + αkkjt + αl ljt + αmmjt + g(ωjt−1, rdjt−1) + ξ jt + ujt.
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hMjt := ωjt =
1

1 − 1
η

[
pMjt − ln

(
1 − 1

η

)
+

1
η

ln F(Kjt, Ljt, Mjt; θ)− ln
∂F
∂M

(Kjt, Ljt, Mjt; θ)

]
. (3)

A direct implication of the DJ approach is that the number of candidate inversion equations for

recovering unobserved productivity equals the number of flexible inputs in the production function.

Each inversion strategy yields an expression for the same underlying productivity term. Stated dif-

ferently, (2) ≡ (3). 3

Consequently, under correct model specification, the parameter estimates should be the same

regardless of the specific flexible input used to recover productivity. This invariance becomes evi-

dent when substituting the recovered productivity term into the empirical production function (1).

Whether productivity is recovered via labor—i.e., ωjt−1 = hLjt−1 from equation (2)—or via materi-

als—i.e., ωjt−1 = hMjt−1 from equation (3)—the resulting empirical specification remains unchanged:

ln Qjt = ln F(Mjt, Ljt, Kjt; θ) + g(ωjt−1, rdjt−1) + ξ jt + ujt

= ln F(Mjt, Ljt, Kjt; θ) + g(hLjt−1, rdjt−1) + ξ jt + ujt

= ln F(Mjt, Ljt, Kjt; θ) + g(hMjt−1, rdjt−1) + ξ jt + ujt.

Thus, DJ parametric framework implies that the empirical production function—after controlling

for unobserved productivity—should be invariant to the specific inversion strategy employed. Any

observed divergence in parameter estimates across inversion strategies may therefore reflect viola-

tions of the underlying assumptions required for identification.

In the following section, we examine two potential sources of misspecification that may explain

the discrepancies observed in DJ’s empirical implementation.

3Under the Cobb-Douglas assumption, the inversion of the labor first-order condition at t − 1 is given by:

ωjt−1 = hLjt−1 = hL(kjt−1, ljt−1, pLjt−1 , pMjt−1 , pjt−1, djt−1; θ)

= λl − αkkjt−1 + (1 − αl − αm)ljt−1 + (1 − αm)pLjt−1 + αm pMjt−1 − pjt−1 − µ(pjt−1, djt−1),

where λl is a constant depending on production parameters, and µ(pjt−1, djt−1) = ln
(

1 − 1
η(pjt−1,djt−1)

)
with η(·) modeled

as a function of price and demand shifters. A similar expression holds for materials:

ωjt−1 = hMjt−1 = hM(kjt−1, mjt−1, pLjt−1 , pMjt−1 , pjt−1, djt−1; θ)

= λm − αkkjt−1 + (1 − αl − αm)mjt−1 + (1 − αl)pMjt−1 + αl pLjt−1 − pjt−1 − µ(pjt−1, djt−1).
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3.-Parameter Estimate Discrepancies as a Diagnostic for Misspecification

In the previous section, we established that, under the identifying assumptions of the DJ framework,

parameter estimates should be invariant to the choice of flexible input used to invert and control

for unobserved productivity. Consequently, any systematic variation in estimates across inversion

strategies may signal a violation of these underlying assumptions.

This implication is put to the test in the empirical application by Doraszelski and Jaumandreu

(2013), who estimate production functions using firm-level data from the Spanish manufacturing

sector. Assuming a Cobb-Douglas specification, they employ both labor and intermediate materi-

als—the two flexible inputs in the firm’s static optimization problem—to recover unobserved pro-

ductivity. However, the resulting parameter estimates vary substantially depending on which input

demand equation is used for inversion. For instance, in the timber and furniture sector, the estimated

capital coefficient falls from 0.131 to 0.037, the labor coefficient rises from 0.176 to 0.266, and the ma-

terials coefficient declines slightly from 0.697 to 0.666. As discussed earlier, similar discrepancies are

observed across other sectors in DJ’s empirical implementation.

Taken together, these discrepancies suggest a failure of one or more key assumptions underlying

the DJ framework. In the following section, we outline two potential sources of such misspecifi-

cation—beyond the standard concern of functional form misspecification—each corresponding to a

distinct violation of the identification strategy implicit in inversion-based estimation.

Optimization Errors

Discrepancies in parameter estimates across inversion strategies may stem from optimization er-

rors—that is, deviations from the first-order conditions implied by profit maximization or cost min-

imization. Such deviations occur when firms make input choices that do not exactly satisfy the nec-

essary conditions for optimality (see (Ackerberg et al., 2015; Reiss and Wolak, 2007)). Crucially, these

violations undermine the scalar unobservable assumption that underlies the control function ap-

proach of Olley and Pakes (OP) and, by extension, the DJ framework.
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Suppose, specifically, that firm j’s choice of flexible input Zjt ∈ Ljt, Mjt is subject to an optimiza-

tion error. Then, the recovered productivity term becomes:

ωjt =
1

1 − 1
η

[
ln pZjt − ln

(
1 − 1

η

)
+

1
η

ln F(Kjt, Ljt, Mjt; θ)− ln
(

∂F(Kjt, Ljt, Mjt; θ)

∂Zjt

)
+ νZ

jt

]
,

where νZ
jt denotes the optimization error associated with input Z. Because ωjt is no longer a

deterministic function of observables and parameters, the inversion introduces an additional unob-

servable into the estimation problem.

When this expression for productivity is substituted back into the empirical production function,

the optimization error νZ
jt enters the unknown function g(·). Since these errors are difficult to instru-

ment, they violate the conditions required for consistent estimation of the structural parameters. In

other words, failure to account for optimization errors may result in biased parameter estimates.

Measurement Errors

Measurement error in the quantities or prices of flexible inputs can generate discrepancies in pa-

rameter estimates across inversion strategies. This issue is particularly relevant in DJ’s empirical

application, given the characteristics of the data source—the Encuesta Sobre Estrategias Empresariales

(ESEE), a Spanish firm-level survey. While the ESEE reports firm-specific rates of price change, it

does not provide firm-specific price levels. As shown in González et al. (2025), this limitation intro-

duces measurement error in deflated input quantities, especially when nominal expenditures must

be converted into real quantities.

To illustrate, consider the case of intermediate materials. Let the log of nominal expenditures be

given by:

ejt = mjt + pMjt = mjt + pMjb + ∆t
Mjb,

where mjt is the log of the quantity of materials input, pMjt the log of the materials price level, pMjb

the base-year price level, and ∆t
Mjb the observed rate of price change between the base year b and
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period t. 4

Since only ∆t
Mjb is observed, the deflated input measure becomes:

m∗
jt = ejt − ∆t

Mjb = mjt + pMjb,

which implies that m∗
jt contains an additive measurement error equal to the unknown base-year price

level pMjb. This error is transmitted directly into the inversion when intermediate materials are used

as the flexible input. In contrast, labor is typically measured in hours or number of employees, which

are directly reported in the dataset and thus less prone to this type of error. 5

Moreover, in the absence of firm-specific output price levels, the base-year output price pjb is

also unobserved. As a result, output is measured with error when constructed from deflated rev-

enues, i.e., r∗jt = qjt + pjb, due to the presence of pjb, a time-invariant, firm-specific price component.

Although this measurement error enters additively, it is non-classical in nature, as it may be corre-

lated with input choices. If ignored, this correlation violates the standard assumptions required for

consistent estimation.

In sum, measurement error—particularly when it differentially affects specific input or output

variables—can induce variation in the recovered productivity process across inversion strategies,

thereby offering a plausible explanation for the divergence in parameter estimates.

4.- Conclusion

In this note, we propose a specification test for production function estimation based on the stabil-

ity of parameter estimates across alternative inversion strategies within the parametric framework

of Doraszelski and Jaumandreu (2013). Inspired by the logic of Levinsohn and Petrin (2003), who
4Any log price level can be decomposed as:

pjt = pjb + (pjt − pjb) = pjb + ∆t
jb,

where ∆t
jb is the observed price rate of change and pjb is the base-year price level, which is unobserved because price levels

are not reported in the dataset.
5Under a Cobb-Douglas production function, intermediate materials affect only the inversion equation based on mate-

rials FOCs, not the labor-based inversion. See footnote 4.
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suggest testing model validity by comparing estimates across nonparametric proxies, our approach

exploits the parametric structure arising from the Cobb-Douglas production function behind the of

the DJ method, where unobserved productivity is recovered from the first-order conditions of flexible

inputs under a Cobb-Douglas production function.

A key implication of the DJ framework is that, under correct specification, the recovered pro-

ductivity—and thus the structural parameters—should be invariant to the choice of input used for

inversion. We show that this prediction fails in DJ’s empirical application: estimates for the same

parameter differ markedly across inversion strategies, with economically meaningful consequences,

particularly for markup estimation. For example, the labor parameter estimate increases from 0.158

to 0.239 in the Spanish transport and equipment sector, or from 0.122 to 0.240 in the chemical sector,

when switching from the labor to the materials inversion strategy. These discrepancies suggest inter-

nal inconsistency and motivate the use of parameter variation as a simple, model-implied diagnostic

for misspecification.

We outline two potential sources of such variation: optimization errors and measurement errors

in prices or quantities. These violate the scalar unobservable assumption fundamental to identifica-

tion.
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